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1 Introduction

Consider a time series of returns rt+i, i = 1, · · · , τ and T = t+τ , the sample

variance, σ2, bσ2 = 1

τ − 1

τX
i=1

(rt+i − μ)2 , (1)

where rt is the return at time t, and μ is the average return over the τ -

period, and σ =
√
σ2 is the unconditional volatility for the period t to T . If

T − t is e.g. a ten-year period and t is measured in daily interval, then bσ2 in
(1) is the daily variance, bσ2d, over the ten-year period. If t is measured in

weekly interval, then bσ2 in (1) is the weekly variance, bσ2w, over the ten-year
period. Since variance is linear in time and can be aggregated but not

standard deviation, bσ2w = 5× bσ2d
with a multiplier of 5 since there are 5 trading days in a week.1 To derive

volatility, which is often linked to the standard deviation, we have the weekly

1Note that such scaling property is not very accurate if the return, rt, are not iid

(indenpendent and identically distributed).
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volatility

bσw =

q
5× bσ2d

=
√
5× bσd

and daily volatility is simply bσd.
It is a well known fact that volatility does not remain constant through

time, the conditional volatility, σt, is a more relevant information for asset

pricing and risk management at time t. So it is a common practice to break

T − t up into smaller superiods such that

T − t = (Tn − Tn−1) + (Tn−1 − Tn−2) + (Tn−2 − Tn−3) + · · ·+ (T1 − t)

= τn + τn−1 + τn−2 + · · ·+ τ1

and (1) becomes

bσ2t = 1

τ j − 1

τjX
i=1

(rt+i − μ)2 , j = 1, · · · , n

Figlewski (1997) noted that the sample mean μ is a very inaccurate estimate

of the true mean especially for small samples; taking deviations around zero

instead of the sample mean as in equation (1) typically increases volatility

forecast accuracy. Hence,

bσ2t = 1

τ j − 1

τjX
i=1

r2t+i, j = 1, · · · , n (2)

Volatility estimation procedure varies a great deal depending on how much

information we have at each sub-interval t,2 and the length of the volatil-

ity reference period, τ j , i.e. the period to which the volatility estimate

2Recently, intraday transaction data has become more widely available providing a

channel for more accurate volatility estimate and forecast. This is the area where much

research effort is concentrated in the last two years.
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is applied. Many financial time series are available at the daily interval,

while the volatility reference period, τ j , could vary from 1 to 10 days (for

risk management), months (for option pricing) and years (for investment

analysing).

When monthly volatility is required and daily data is available, volatil-

ity can simply be calculated based on equation (2), where τ j is one month,

and rt+i for i = 1, · · · , τ j are the daily observations in that month. Many

macroeconomic series are available only at the monthly interval, so the cur-

rent practice is to use absolute value to proxy for volatility since τ j = 1

(Note that we will not divide the estimator by τ j − 1 = 0 as it will make

the volatility infinite). The same applies to financial time series when daily

volatility estimate is required and only daily data is available.

The use of daily absolute return to proxy daily volatility will produce a

very noisy volatility estimator. This is explained in Section 1.1 later. Engle

(1982) was the first to propose the use of an ARCH (Autoregressive Condi-

tional Heteroskedasticity) model below to produce conditional voaltility for

inflation rate rt;

rt = μ+ εt, εt ∼ N
³
0,
p
ht

´
εt = zt

p
ht,

ht = ω + α1ε
2
t−1 + α2ε

2
t−2 + · · · . (3)

where ht is the conditional variance and σt =
√
ht is the conditional volatil-

ity. The ARCH model is estimated by maximising likelihood of observing

{εt}. This approach of estimating conditional volatility is less noisy than

the absolute return approach but it relies on the assumption that the ARCH

model in (3) is the true return generating process, εt is gaussian and the

time series is long enough for such a maximum likelihood estimation.
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Moreover, while bσ2 in equation (1) is an unbiased estimator for σ2, the
square root of bσ2 is a biased estimator for σ due to Jensen inequality.3

Ding, Granger and Engle (1993) suggest measuring conditional volatility di-

rectly from absolute returns. Davidian and Carroll (1987) show absolute

returns volatility specification is more robust against asymmetry and non-

normality. There is some empirical evidence that deviations or absolute

returns based models produce better volatility forecasts than models based

on squared returns (Taylor (1986), Ederinton and Guan (2000a) and McKen-

zie (1999)) but the majority of time series volatility models especially the

ARCH class models are squared-returns models. There are methods for

estimating volatility that are designed to exploit or reduce the influence of

extremes.4 Again these methods would require the assumption of gaussian

variable or a particular distribution function for returns.

1.1 Using squared return as a proxy for daily volatility

Volatility is a latent variable. Before high frequency data became widely

available, many researchers resorted to using daily squared return, calculated

from market closing prices, to proxy daily volatility. Lopez (2001) shows

that ε2t is an unbiased but extremely imprecise estimator of σ
2
t due to its

asymmetric distribution. Let

rt = μ+ εt , εt = σtzt , (4)

3 If rt ∼ N 0, σ2t , then E (|rt|) = σt 2/π. Hence, σt =
|rt|√
2/π

if rt has a conditional

normal distribution.
4For example, the Maximum likelihood method proposed by Ball and Torous (1984),

the high-low method proposed by Parkinson (1980) and Garman and Klass (1980).
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and zt ∼ N (0, 1). Then

E
£
ε2t
¯̄
Φt−1

¤
= σ2tE

£
z2t
¯̄
Φt−1

¤
= σ2t

since z2t ∼ χ2(1). However, since the median of a χ
2
(1) distribution is 0.455,

ε2t is less than
1
2σ
2
t more than 50% of the time. In fact

Pr
µ
ε2t ∈

∙
1

2
σ2t ,

3

2
σ2t

¸¶
= Pr

µ
z2t ∈

∙
1

2
,
3

2

¸¶
= 0.2588 ,

which means that ε2t is 50% greater or smaller than σ2t nearly 75% of the

time!

Under the null hypothesis that rt in (4) is generated by a GARCH(1,1)

process, Andersen and Bollerslev (1998) show that the population R2 for

the regression

ε2t = α+ βbσ2t + υt

is equal to κ−1 where κ is the kurtosis of the standardized residuals, zt, and

κ is finite. For conditional Gaussian error, the R2 from a correctly specified

GARCH(1,1) model is bounded from above by 1
3 . Christodoulakis and

Satchell (1998) extend the results to include compound normals and the

Gram-Charlier class of distributions and show that the mis-estimation of

forecast performance is likely to be worsened by non-normality.

It is clear that the use of ε2t as a volatility proxy will lead to low R2

and undermine the inference regarding forecast accuracy. Blair, Poon and

Taylor (2001) report an increase of R2 by 3 to 4 times for the one-day

ahead forecast when intra-day 5-minutes squared returns instead of daily

squared returns are used to proxy the actual volatility. Figure 1 shows

the time series of these two volatility estimates over the seven-year period

from January 1993 to December 1999. Although the overall trends look

similar, the R2 of the regression of |εt| on σintrat is only 28.5%. Hence,
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Figure 1: Aurocorrelation of daily returns and proxies of daily volatility of

S&P100

unless there is no other choice, one should always refrain from using daily

absolute return to proxy daily volatilty, or using daily squared return to

proxy daily conditional variance.

1.2 Using high-low measure to proxy volatility

The high-low, also known as range based or extreme-value, method of es-

timating volatility is very convenient because daily high, low, opening and

closing prices are reported by major news papers, and the calculation is
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easy to programme even with a hand held calculator. The high-low (H-

L) volatility estimator was studied in Parkinson (1980), Garman and Klass

(1980), Beckers (1983), Rogers and Satchell (1991), Wiggins (1992), Rogers,

Satchell and Yoon (1994) and Alizadeh, Brandt and Diebold (2002). It is

based on the assumption that return is conditionally normally distributed

with conditional volatility σt. Let Ht and Lt denote, respectively, the high-

est and the lowest prices on day t. Applying the Parkinson (1980) H-L

measure to a price process that follows a geometric Brownian motion results

in the following volatility estimator (see Bollen and Inder, 2002);

bσ2t = (lnHt − lnLt)
2

4 ln 2

The German and Klass’s (1980) estimator is an extension of Parkinson

(1980) where information about opening, pt−1, and closing, pt, prices are

incorporated as follow:

bσ2t = 0.5µln Ht

Lt

¶2
− 0.39

µ
ln

pt
pt−1

¶2
.

We have already shown that financial market returns are not likely to be

normally distributed and have long tail distribution. The H-L volatility

estimator is very sensitive to outliers. It will be useful to apply the trimming

procedures, specifies in equation (10), to the entire data set first if the H-

L volatility estimator is used. Provided there are no destabilising large

values, the H-L volatility estimator is very efficient and, unlike the realized

volatility estimator introduced in the next section, it is less affected by

market microstructure noise.
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1.3 Realised volatility, quadratic variation and jumps

More recently and with the increased availability of tick data (i.e. prices

recorded at transaction level), the term realised volatility is now used

to refer to volatility estimates calculated as the sum of intraday squared

returns at short intervals such as 5 or 15 minutes.5 For a series that has

zero mean and no jumps, the realised volatility converges to the continuous

time volatility, known as the quadratic variation . To understand this,

we assume for the ease of exposition that the instantaneous returns are

generated by the continuous time martingale,

dpt = σtdWt (5)

where dWt denotes a standard Wiener process. While asset price pt can be

observed at time t, the volatility σt is an unobservable latent variable that

scales the stochastic process dWt continuously through time. From (5) the

conditional variance for the one-period returns, rt+1 ≡ pt+1 − pt, is

σ2t =

Z t+1

t
σ2sds

which is known as the integrated volatility over the period t to t+1, and

pt is the logarithmic of stock price at time t.

Let m be the sampling frequency within each period t, i.e. there are m

continuously compounded returns between t-1 and t

rm,t+1/m ≡ pt+1/m − pt (6)

rm,t+2/m ≡ pt+2/m − pt+1/m

5See Fung and Hsieh (1991) and Andersen and Bollerslev (1998). In the foreign

exchange markets, quotes for major exchange rates are available round the clock. In the

case of stock markets, close-to-open squared return is used in the volatility aggregation

process during market close.
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and realised volatility

RVt+1 =
X

j=1,··· ,m
r2m,t+ j/m.

If the discretely sampled returns are serially uncorrelated and the sample

path for σt is continuous, it follows from the theory of quadratic variation

(Karatzas and Shreve (1988)) that

lim
m→∞

⎛⎝Z t+1

t
σ2sds−

X
j=1,··· ,m

r2m,t+ j/m

⎞⎠ = 0.

Hence, time t volatility is theoretically observable from the sample path

of the return process so long as the sampling process is frequent enough.

Characteristics of financial market data suggest that returns measured at

an interval shorter than 5 minutes are plagued by spurious serial correlation

caused by various market microstructure effects including nonsynchronous

trading, discrete price observations, intraday periodic volatility patterns and

bid-ask bounce.6 Bollen and Inder (2002), Ait-Sahalia, Mykland and Zhang

(2003) and Bandi and Russell (2004) gave suggestions on how to isolate

microstructure noise from realised volatility estimator.

1.3.1 Problem with jumps

When there are jumps, the price process in (5) becomes

dpt = σtdWt + Jtdqt, (7)

6The bid-ask bounce for example induces negative autocorrelation in tick data and

causes the realised volatility estimator to be upwardly biased. Theoretical modelling of

this issue so far assumes the price process and the microstructure effect are not correlated

which is open to debate since market microstructure theory suggests that trading has an

impact on the efficient price. I am grateful to Frank de Jong for explaining this to me at

a conference.
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where dqt is a poison process with dqt = 1 corresponding to a jump at time

t, and zero otherwise, and κt is the jump size at time t when there is a

jump. In this case, the quadratic variation for the return process in (7) is

then given by Z t+1

t
σ2sds+

2X
t<s≤t+1

J2s , (8)

which is the sum of the integrated volatility and jumps.

In the absence of jumps, the second term on the RHS of (8) disappears,

and the quadratic variation is simply equal to the integrated volatility.

In the presence of jumps, the realised volatility continues to converge to the

quadratic variation in (8)

lim
m→∞

⎛⎝Z t+1

t
σ2sds+

X
t<s≤t+1

J2s −
mX
j=1

r2m,t+ j/m

⎞⎠ = 0. (9)

1.3.2 Bipower variations

If there is a jump between t and t + 1/m, then r2m,t+1/m will be very big.

Barndorff-Nielsen and Shephard (2003) show that the standardised realised

bipower variation measure

BV
[a,b]
m,t+1 =

µ
1

m

¶1−(a+b)/2 m−1X
j=1

¯̄
rm,t+ j/m

¯̄a ¯̄
rm,t+(j+1)/m

¯̄b
, a, b ≥ 0.

with a = b = 1 converges to integrated volatility

μ−21 BV
[1,1]
m,t+1 = μ−21

m−1X
j=1

¯̄
rm,t+ j/m

¯̄ ¯̄
rm,t+(j+1)/m

¯̄
→
Z t+1

t
σ2sds

where μ1 =
q

2
π provided that jumps are rare and there is no ‘leverage’

effect.7 Hence, the realised volatility and the realised bipower variation
7This refers to the empirically observed negative relationship between stock price and

stock volatility.
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can be substituted into (9) to estimate the jump component, Jt. Barndorff-

Nielsen and Shephard (2003) suggest imposing a non-negative constraint on

κt. This is perhaps too rstrictive. For non-negative volatility, Jt+μ−21 BVt >

0 will be sufficient.

1.4 Scaling and actual volatility

The forecast of multi-period volatility σt,t+τ (i.e. for τ period) is taken to be

the sum of individual multi-step point forecasts
Pτ

s=1 ht+τ |t. These multi-

step point forecasts are produced by recursive substitution and using the fact

that ε2t+s|t = ht+s|t for s > 0 and ε2t+s|t = ε2t+s for s ≤ 0. Since volatility

of financial time series has complex structure, Diebold, Hickman, Inoue and

Schuermann (1998) warn that forecast estimates will differ depending on the

current level of volatility, volatility structure (e.g. the degree of persistence

and mean reversion etc.) and the forecast horizon, τ . These will be made

clearer in the discussions below.

If returns are iid (independent and identically distributed, or strict white

noise), then variance of returns over a long horizon can be derived as a sim-

ple multiple of single period variance. But, iid is clearly not the case for

many financial time series because of the volatility stylized facts discussed

previously. On the other hand, while a point forecast of bσ T−1,T | t−1 becomes

very noisy as T = t+ τ →∞, a cumulative forecast, bσ t,T | t−1 =
qbσ2t,T | t−1,

becomes more accurate because of errors cancellation and volatility mean

reversion unless there is a fundamental change in the volatility level or struc-

ture.8

8σ t,T | t−1 denotes a volatility forecast formulated at time t − 1 for volatility over the

period from t to T . In pricing options, the required volatility parameter is the expected

volatility over the life of the option. The pricing model relies on a riskless hedge to be
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Complication in relation to the choice of forecast horizon is partly due to

volatility mean reversion. As far as sampling frequency is concerned, Drost

and Nijman (1993) prove, theoretically and for a special GARCH(1,1) case,

that volatility structure should be preserved through intertemporal aggre-

gation. This means that whether one models volatility at the hourly, daily

or monthly intervals, the volatility structure should be the same. But, this

is not the case in practice; volatility persistence, which is highly significant

in daily data, weakens as the frequency of data decreases.9

In general, volatility forecast accuracy improves as data sampling fre-

quency increases relative to forecast horizon (Andersen, Bollerslev and Lange

(1999)). However, for forecasting volatility over a long horizon, Figlewski

(1997) finds forecast error doubled in size when daily data, instead of monthly

data, is used to forecast volatility over 24 months. In some cases, where

application is of very long horizon e.g. over 10 years, volatility estimate

calculated using low frequency data such as weekly or monthly is better

because volatility mean reversion is difficult to adjust using high frequency

data. In general, model based forecasts lose supremacy when the forecast

horizon increases with respect to the data frequency. For forecast horizons

that are longer than 6 months, a simple historical model using low frequency

followed through until the option reaches maturity. Therefore the required volatility input,

or the implied volatility derived, is a cumulative volatility forecast over the option maturity

and not a point forecast of volatility at option maturity. The interest in forecasting

σ t,T | t−1 goes beyond the riskless hedge argument however.
9See Diebold (1988), Baillie and Bollerslev (1989) and Poon and Taylor (1992) for

examples. Note that Nelson (1992) points out separately that as the sampling frequency

becomes shorter, volatility modelled using discrete time model approaches its diffusion

limit and persistence is to be expected provided that the underlying returns is a diffusion

or a near diffusion process with no jumps.
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data over a period at least as long as the forecast horizon works best (Alford

and Boatsman (1995) and Figlewski (1997)).

2 The treatment of large numbers

To a statistician, there are always two ‘extremes’ in each sample, namely

the minimum and the maximum. Here, a large number refers generally

to extreme values, outliers and jumps, a group of observations that do not

belong to the same distribution as the majority of the observations in data

sample. These large numbers have undue influence on modelling and es-

timation (Huber, 1986). Unless extreme value techniques are used, where

scale and marginal distribution are removed, it is advisable that outliers are

removed or trimmed before modelling volatility. One such outlier in stock

market returns is the October 1987 crash that produced a one-day loss of

over 20% in stock markets worldwide.

The ways that outliers were tackled in the literature very much depend

on their sizes, the frequency of their occurence and if these outliers produce

an additive or a multiplicative impact. For the rare and additive outliers,

the most common treatment is simply by removing them from the sample or

omit them in the likelihood calculation (Kearns and Pagan, 1993). Franses

and Ghijsels (1999) find forecasting performance of the GARCH model is

substantially improved in 4 out of 5 stock markets studied when the additive

outliers are removed. For the rare multiplicative outliers that produced a

residual impact on volatility, a dummy variable could be included in the

conditional volatility equation after the outlier returns has been dummied
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out in the mean equation (Blair, Poon and Taylor, 2001).

rt = μ+ ψ1Dt + εt, εt =
p
htzt

ht = ω + βht−1 + αε2t−1 + ψ2Dt−1

where Dt is 1 when t refers to 19 October 1987 and 0 otherwise. Personally,

I find simple method like trimming rule below

Tr =Min [r, r0.99] , or Max [r, r0.01] . (10)

(10) very easy to implement and effective. Such a jump removal procedure

will underestimate volatility if jump is expected to occur again. But jump,

by nature, is hard to predict. Until we have a better understand of and

model for stock market jumps, the recommendation is to remove them in

the estimation and modelling of volatility.

The removal of outliers does not remove volatility persistence. In fact,

the evidence in the previous section shows trimming the data using (10)

actually increases the ‘long memory’ in volatility making it appears to be

extremely persistence. Since autocorrelation is defined as

ρ (rt, rt−τ ) =
Cov (rt, rt−τ )

V ar (rt)
,

the removal of outliers has a great impact on the denominator, reduces

V ar (rt) and increases the individual and the cumulative autocorrelation

coefficients.
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